OPEN PROBLEMS IN MATHEMATICAL CHEMISTRY

GENERALIZATION OF EXTREMAL HEXAGONAL ANIMALS (POLYHEXES)

S.J. CYVIN
Division of Physical Chemistry, The University of Trondheim, N-7034 Trondheim-NTH, Norway

Received 19 December 1991

A very useful relation for polyhexes, viz.

$$
\begin{equation*}
n_{i} \leq 2 h+1-\left\lceil(12 h-3)^{1 / 2}\right\rceil \tag{1}
\end{equation*}
$$

was given explicitly by Gutman [1] as a simple deduction from an analysis of Harary and Harborth [2]. Here, h and n_{i} are the numbers of hexagons and internal vertices, respectively. The ceiling function is employed; $\lceil x\rceil$ is the smallest integer not smaller than x. The upper bound (1) of n_{i} is realized in "extremal animals" [2]. It is noted that the Harary-Harborth analysis which led to eq. (1) was based on the solution [3] of an open problem posed by Reutter [4] in the form of a conjecture.

Fig. 1. The monopentahexagonal lattice with the contour (heavy line) defining the $\mathrm{C}_{16} \mathrm{H}_{10}$ fluoranthene graph.

Let a geometrically planar, simply connected mono- q-polyhex be defined by a cycle on a mono- q-hexagonal lattice in analogy with the current definition of geometrically planar, simply connected polyhexes (benzenoids) [1]. The mono-qhexagonal lattice is similar to the hexagonal lattice; it consists of exactly one q-gon and otherwise hexagons. In fig. 1 , the example with $q=5$ is depicted, the monopentahexagonal lattice. The cycle should embrace the unique q-gon, in fig. 1 the pentagon.

Many hydrocarbons correspond to the mono- q-polyhex graphs, e.g. the (q) circulenes. In this set of homologous molecules, $\mathrm{C}_{20} \mathrm{H}_{10}$ corannulene [5] is (5)circulene, while $\mathrm{C}_{24} \mathrm{H}_{12}$ coronene is chemically indistinguishable from (6)circulene. Also $\mathrm{C}_{28} \mathrm{H}_{14}$ (7)circulene has been synthesized [6], and a synthesis of $\mathrm{C}_{32} \mathrm{H}_{16}$ (8)circulene has been attempted [7].

The following conjecture is proposed for mono- q-polyhexes:

$$
\begin{equation*}
n_{i} \leq 2 h^{\prime}-\left\lceil(1 / 2)\left(8 q h^{\prime}+q^{2}\right)^{1 / 2}-(q / 2)\right\rceil \tag{2}
\end{equation*}
$$

where h^{\prime} is the number of hexagons outside the unique q-gon. The upper bound (2) is supposed to be realized in the appropriate extremal systems. In the words of Reutter [4]: "Man beweise oder widerlege diese Vermutung."

The special case (1) emerges from (2) by inserting $h^{\prime}=h-1$ and $q=6$. Another important special case is $q=5$ for monopentapolyhexes, which pertain to the many known fluoranthenoid/fluorenoid hydrocarbons (including corannulene). Let

$$
\begin{equation*}
r=h^{\prime}+1 \tag{3}
\end{equation*}
$$

denote the number of polygons (or "rings"). Then, if the conjecture (2) is sound, one has

$$
\begin{equation*}
n_{i} \leq 2 r-\left\lceil(1 / 2)(40 r-15)^{1 / 2}-(1 / 2)\right\rceil \tag{4}
\end{equation*}
$$

References

[1] I. Gutman, Bull. Soc. Chim. Beograd 47(1982)453.
[2] F. Harary and H. Harborth, J. Combin. Inf. Sys. Sci. 1(1976)1.
[3] H. Harborth, Elem. Math. 29(1974)14.
[4] O. Reutter, Elem. Math. 29(1974)14.
[5] W.E. Barth and R.G. Lawton, J. Amer. Chem. Soc. 93(1971)1730.
[6] K. Yamamoto, T. Harada, M. Nakazaki, T. Naka, Y. Kai, S. Harada and N. Kasai, J. Amer. Chem. Soc. 105(1983)7171.
[7] B. Thulin and O. Wennerström, Acta Chem. Scand. B30(1976)369.

